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Institute of Nuclear Sciences ‘Vinča’, Laboratory for Theoretical Physics, 11001 Belgrade, PO
Box 522, Serbia

Received 11 September 1995, in final form 2 April 1996

Abstract. Using the description of the linear phase insensitive amplification of a quantum
state available in the literature we prove that to every stateρ(t), produced from the initial state
ρ(0) by such amplification, there corresponds a phase space distributionλ2D0(λq, λp), where
D0(q, p) is the Husimi function of the initial state. The scaling parameterλ satisfies the relation
0< λ < 1 and decreases with time while, as we have shown earlier, the scaled function is again
a Husimi distribution.

We prove, using these facts, that if the definition of the phase insensitive amplification is
physically correct then the distribution of the phase of a state is unambiguously given as the
corresponding marginal distribution obtained from its Husimi distribution represented in polar
coordinates.

1. Introduction

The generally accepted definition of the phase distribution of a quantum state, although
needed for various reasons, does not exist. The reason for this is that the problem of finding
the proper dynamical variable corresponding to the phase of a quantum field is not solved.
There have been numerous attempts to construct satisfactory phase operators and the whole
question has been the subject of discussion and controversy for a long time [1–5]. Several
attempts have been made to examine the adequacy of some definitions experimentally, but
no clear conclusion was reached [6–8].

In another area of research, instead of a search for the phase operator, attempts have been
made to define the distribution of the phase directly, with the help of functions appearing in
phase space formulations of quantum mechanics [9, 10]. It is well known that, regarding the
quantum mechanical state, all such functions are informationally complete [11]. The central
question now is how to obtain the distribution of phase from such functions. The simplest
way would be to define the distribution of phase, using the analogy with classical statistical
mechanics, as the corresponding marginal distribution of the considered phase space function
in polar coordinates in phase space. A new question then arises of which phase space
function to use, because different phase space functions give different distributions of
phase for the same quantum mechanical state, or whether to choose a completely different
approach. The comparisons with experiment again did not give sufficient evidence to answer
this question.
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In the present work we give the reasons for which one can assume that the phase
distribution of quantum state is correctly given as the corresponding marginal distribution
obtained from its Husimi function represented in polar coordinates in phase space.

Our arguments, which are given in the following sections, run as follows.
We first prove that in the class of Cohen distributions, which contains virtually all the

most frequently used phase space functions, only the Husimi functions have the property to
remain Husimi functions after the change of variables(q, p) → (λq, λp), 0< λ < 1.

Further, we relate the so-defined scaling of Husimi functions with the amplification of
the state with the linear phase insensitive amplifier, as described by Glauber in [12–14]. We
show that in the limit of the most quiet amplification the evolution of the initial state during
the process of such amplification may be described as the scaling of the initial Husimi
distribution. The scaling parameterλ is an exponentially decreasing function of the time
duration of the process of amplification and can be made as small as we wish. We have
proved in [15] that for sufficiently smallλ the scaled Husimi functions begin to behave
classically so that for such states all physical information may be obtained in a classical
way. So, as the phase insensitive amplification does not change the phase of the initial state
and the initial state in the process of amplification evolves to a classical state, we conclude
that the distribution of phase of every state is given as a corresponding marginal of the
Husimi function represented in polar coordinates. Finally, we discuss some consequences
of our results.

2. Scaling invariance of the Husimi function and its consequences

In [15] we proved that after the transformation(q, p) → (λq, λp), where 0< λ < 1,
every Husimi function with appropriate renormalization remains in the class of Husimi
distributions. For completeness of further analysis we will first prove this fact here in a
different, more constructive way.

Up to a numerical factor the Husimi distribution function may be defined as the diagonal
matrix element of the density matrix̂ρ in the harmonic oscillator coherent state basis|α〉
(hereafter ¯h = 1):

DH(q, p) = 1

π
〈α|ρ̂|α〉. (1)

Every density matrix may be represented in the form

ρ̂ =
∑
k

pk|ψk〉〈ψk| pk > 0. (2)

In the basis of the eigenenergy states of a harmonic oscillator, the coherent states|α〉 are
given as

|α〉 = e−|α|2/2
∞∑
n=0

αn√
n!

|n〉 (3)

where

α = 1√
2

(√
bq + i√

b
p

)
b = mω.

From (1)–(3) we have

DH(q, p) = e−|α|2 ∑
k

pk

( ∑
n

Ak∗n
α∗n
√
n!

)( ∑
m

Akm
αm√
m!

)
(4)
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where

Akn = 〈ψk|n〉.
After the change of variables(q, p) → (λq, λp) and the renormalization, we have

F(q, p) = λ2DH(λq, λp) = λ2

π
e−λ2|α|2 ∑

k

pk

( ∑
n

Ak∗n
λnα∗n
√
n!

)( ∑
m

Akm
λmαm√
m!

)
. (5)

Now

e−λ2|α|2 = e−|α|2+(1−λ2)|α|2 = e−|α|2
∞∑
s=0

(1 − λ2)s

s!
(αα∗)s

so that we can write

F(q, p) = λ2 e−|α|2

π

∑
k,s

pk

[( ∑
n

Ak∗n λ
n α

∗(n+s)
√
n!

)( ∑
m

Akmλ
m α

m+s
√
m!

)
(1 − λ2)s

s!

]
. (6)

This expression may be written in the form

F(q, p) = 1

π
〈α|ρ̃|α〉 (7)

where

ρ̃ = λ2
∑
k,s

pk

( ∑
n

Ak∗n λ
n

√
(n+ s)!√
n!

|n+ s〉
)

×
( ∑

m

Akmλ
m

√
(m+ s)!√
m!

〈m+ s|
)

× (1 − λ2)s

s!
. (8)

For 0< λ < 1, ρ̃ is positive definite and since
∞∑
s=0

(1 − λ2)2

s!

(n+ s)!

n!
= 1

λ2n+2
(9)

it is normalized, soρ̃ is a density matrix. Due to this, the function

F(q, p) = λ2DH(λq, λp) = 1

λ
〈α|ρ̃|α〉 (10)

is again a Husimi distribution.
So, the class of Husimi distributions is scale invariant.
We will now prove that all the other most frequently used phase space functions are not

scale invariant. To this end we will consider the class of Cohen functions [16]:

Pψ(f ; q, p) = 1

(2π)2

∫
exp[−i(θq + τp − θu)f (θ, τ )ψ∗(u− 1

2τ)ψ(a + 1
2τ) dθτ du.

(11)

Straightforward calculation shows that this expression may be written in the form

Pψ(f ; q, p) = 1

2π

∫
exp[−i(θq + τp)]f (θ, τ )V (θ, τ )dθ dτ (12)

whereV (θ, τ ) is a Fourier transform of a Wigner function

V (θ, τ ) = 1

2π

∫
W(q, p)eiqθ+ipτ dq dp

= 1

(2π)2

∫
ψ∗(q + 1

2ξ)ψ(q − 1
2ξ)e

ipξeiqθ+ipτ dξ dq dp. (13)



3790 D M Davidović and D Lalović

We will restrict our considerations to the case when the functionf (θ, τ ) may be represented
in the formf (θ, τ ) = e�(θ,τ ), and� is an entire function

�(θ, τ ) =
∑
n,m

Anmθ
nτm. (14)

Even with this restriction, the Cohen function contains the Husimi function, the Wigner
function, theP function, the standard and the antistandard function and many others as
special cases [17, 18].

Introducing the operator

e�̂(q,p) = exp

( ∑
n,m

Anmin+m
∂n+m

∂qn∂pm

)
(15)

we can write

exp[−i(θq + τp)]f (θ, τ ) = e�̂e−i(θq+τp). (16)

Now the expression (12) may be written in the form

Pψ(f ; q, p) = 1

2π

∫
e�̂(∂/∂q,∂/∂p)[e−i(θq+τp)V (θ, τ )dθ dτ ] (17)

or, after the change of the order of integration and differentiation over the parameters, which
are present in the exponent

Pψ(f ; q, p) = e�̂(∂/∂q,∂/∂p)W(q, p). (18)

Between the Wigner function and the Husimi function exists the relation [17]

W(q, p) = exp

[
− 1

4b

∂2

∂q2
− b

4

∂2

∂p2

]
DH(q, p). (19)

From (18) and (19) follows the relation

Pψ(f, q, p) = e�̂(∂/∂q,∂/∂p) exp

[
− 1

4b

∂2

∂q2
− b

4

∂2

∂p2

]
DH(q, p). (20)

Now making the change of variables(q, p) → (λq, λp), 0< λ < 1, we obtain

Pψ(f ; λq, λp) = exp

[ ∑
nm

Anm

λn+m
in+m

∂n+m

∂qn∂pm
− 1

4bλ2

∂2

∂q2
− b

4λ2

∂2

∂p2

]
DH(λq, λp)

= exp

[ ∑
nm

′ Anm
λn+m

in+m
∂n+m

∂qn∂pm
+ 1

λ2

(
A20 − 1

4b

)
∂2

∂q2

+ 1

λ2

(
A02 − b

4

)
∂2

∂p2

]
·DH(λq, λp) (21)

where
∑′

n,m denotes the sum from which the terms withA20 and A02 are excluded.
One concrete class of the Cohen functions is characterized by the concrete choice of the
parametersAmn. We will now analyse the question of whether it can happen that for every
λ and every fixed set of the parametersAmn, one can always find another function from the
same class which is equal to the scaled function under consideration. We have just shown
that this is the case for the class of Husimi distributions. Now we shall prove that all the
other classes of Cohen functions are not invariant under scaling. Namely, asDH(λq, λp) in
(21) is scale invariant, then if the function on the left-hand side in (21) were scale invariant
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for everyλ and every state described by the corresponding Husimi distribution, it would be
necessary that the following conditions be fulfilled:(
A20 − 1

4b

)
1

λ2
=

(
A20 − 1

4b

) (
A02 − b

4

)
1

λ2
=

(
A02 − b

4

)
Amn

λn+m
= Amn. (22)

The last conditions follow from the comparison of (20) and (21). However, these conditions
may be satisfied only ifλ = 1, which is a trivial case, or when

A20 = 1

4b
A02 = b

4
(23)

and all other coefficients are zero and this is a class of Husimi distributions.
So, in every class of the Cohen functions, except the class of Husimi distributions, there

always may be found at least one function such that after the scaling it does not remain in
the same class of functions. In this respect the class of Husimi functions has a privileged
position among the other most frequently used phase space functions.

Now we shall find the relation between theλ scaling of the Husimi function and the
amplification of the state by a phase insensitive linear amplifier, as described by Glauber
[12–14].

According to Glauber the amplification process forces the initial density matrix

ρ(0) =
∫
P(t = 0;α0)|α0〉〈α0|d2α0 (24)

to evolve into

ρ(t) =
∫
P(t;α)|α〉〈α|d2α (25)

with

P(t;α) =
∫

d2α0P(t;α|t0 = 0;α0)P (t0 = 0;α0) (26)

whereP(t0 = 0;α0) is the GlauberP function of the initial state. The conditional probability
under the integral is given by the following expression [13, 14]

P(t;α|t0 = 0;α0) = π−1N(t)−1 exp[−N−1|α − α0ekt |2] (27)

where

N(t) = (1 + 〈n〉)(e2kt − 1). (28)

Here k and 〈n〉 denote the amplification constant and the mean number of photons of the
heat bath, respectively.

We shall now describe the same process in terms of the Husimi distribution. By the
definition of the Husimi function we have

D(t; q, p) = 1

π
〈α|ρ(t)|α〉 = 1

π

∫
d2α′P(t;α′)|〈α|α′〉|2. (29)

After the integration overα′ we obtain

D(t; q, p) = 1

2π

1

M(t)

∫
d2α0P(t0 = 0;α0)

× exp

[
−b

2

1

M(t)
(q − q0ekt )2 − 1

2b

1

M(t)
(p − p0ekt )2

]
(30)
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whereM(t) ≡ 1 +N(t).
In the limit of most quiet amplification when〈n〉 = 0 we have 1+ N = e2kt , and this

expression simplifies to

D(t; q, p) = 1

2π

∫
d2α0P(t0 = 0;α0) exp

[
−b

2
(qe−kt − q0)

2 − 1

2b
(pe−kt − p0)

2

]
e−2kt .

(31)

Since

D(0; q, p) ≡ D0(q, p) = 1

2π

∫
d2α0P(t0 = 0;α0) exp

[
−b

2
(q − q0)

2 − 1

2b
(p − p0)

2

]
(32)

we can write

D(t; q, p) = λ2D0(λq, λp) (33)

whereλ = e−kt , and obviously 0< λ 6 1.
The last equality shows that the scaling transformation of Husimi function may be

interpreted as the linear, most quiet amplification of the initial state, andvice versa. In this
way we have established the important relation between the formal procedure of the scaling
of Husimi distribution and the concrete physical process of the amplification of a quantum
state.

Concluding this section let us note that for a state described byλ2D0(λq, λp)

with sufficiently small λ, all the Cohen functions describing the same state, become
close to each other, and in the limiting caseλ → 0, they become equal. This is
so because all of them are related toλ2D0(λq, λp) through the relation of the type
λ2(1 + ∑

mn Amn∂
m+n/∂qm∂pn)D0(q, p) and every differentiation overq and p causes

the multiplication by the small parameterλ.

3. Concluding remarks

When the scaling parameterλ is sufficiently small, the transformed Husimi distribution
λ2D(λq, λp) behaves almost as a classical distribution because it is a normalized non-
negative function, and consequently a true probability distribution, and because, as we have
shown in [15], the average values of all physical quantities in such a state may be obtained
in the classical way so that the error introduced by such a procedure may be made negligible.

We will now discuss, in the light of our new results, the consequences of this fact
regarding the problem of the definition of the phase distribution of a quantum state.

We proved in [15] that the functionλ2D(λq, λp), for every positiveλ smaller than unity,
represents some physical state. We have shown in the preceding section that all these states
may be produced from the initial stateD(q, p) by the linear phase insensitive amplification
and that this process may be described as a scaling transformation of the initial state.

Phase insensitive amplification, by definition, does not change the phase of the amplified
state. By performing the amplification of the state for a sufficiently long time the scaling
parameterλ may be made as small as we wish. This means that the amplified state begins
to behave classically so that its phase distribution may be obtained in a classical way. Due
to this, if the definition of the phase insensitive amplification is physically correct then the
problem of the distribution of phase for any state of harmonic oscillator is solved in a unique
way. The phase distribution of a state is then the distribution obtained after the integration
of the corresponding Husimi function represented in polar coordinates over the polar radius.
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When the considered state is quasiclassical its phase distribution may be obtained with
a good approximation from any of the most frequently used phase space functions with the
same procedure because, as we have shown, all such functions are nearly equal for such
states. However, our results show that in the extreme quantum situations this procedure
may be physically justified for Husimi functions only.

In the very vast literature related to the problem of phase of the harmonic oscillator, of
which virtually all was described and discussed in the time honoured review by Carruthers
and Nieto [3], and the recent review by Lynch [19], only in the paper of Schleichet al
[20] was Glauber’s approach of phase insensitive amplification related to the problem of
the phase distribution. The main new result of this paper, according to its authors, is the
conclusion that: ‘In the limit of strong but quiet amplification, theP distribution of the
final amplified state is identical to theQ function of the original unamplified state displaced
by the number of photons fed in by the amplifier’ (equation (10) of [20]). They also noted
that ‘the phase distribution obtained by integrating (over the radius)the Q function of the
initial state is identical to that found by integrating theP distribution of the final state’.

One part of our new results may be considered as a generalization of the quoted results.
We have succeeded in describing Glauber’s process of the phase insensitive amplification
completely in terms of a Husimi function and proved that the time evolution of a state in the
process of the amplification may be represented as the monotonic continuous time-dependent
scaling of the initial Husimi function. Such a relation of scaling was established in [20]
only between the initial and the final strongly amplified almost classical state(kt � 1).

The second quoted result from [20] is also generalized by us in the following two
respects. We have shown that for strongly amplified states all the phase space functions from
the Cohen’s class become asymptotically equal, so that by integrating in polar coordinates
whichever represents the same state one will obtain practically the same results for the phase
distribution as by integrating theP distribution, and all these results are asymptotically equal
to the result obtained by integrating the Husimi function of the initial state. Our results also
show that for Husimi distributions alone, the phase distributions obtained after integration
in polar coordinates are exactly equal, not only for the initial and the strongly amplified
final state, but also for all the states generated from the initial state in the process of the
phase insensitive amplification at any moment of time. This unique property of Husimi
distributions, unnoticed until now, is based on the fact established in section 2 that among
all the Cohen’s functions only the class of Husimi functions is closed under identical scaling
of coordinate and momentum.

In this paper we have used the process of the linear phase insensitive amplification
as part of the physical ground which has enabled us to reach and formulate explicitly the
fundamental conclusion that the phase distribution of a quantum state is correctly defined
as the corresponding marginal distribution in polar coordinates obtained from the Husimi
function of the considered state.
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